
Introduction to Determinantal Rings

Ethan Morgan

BIKES
April 12, 2024

Contents

Introduction 1

1 Motivation and Basics 2
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bitableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Standard Bitableaux 3
2.1 The Straightening Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Determinantal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Representation Theory 6

4 Miscellaneous Curiosities 6

Introduction

You are now looking at the notes I prepared for a talk that I gave at BIKES in spring
2024. These notes draw heavily on chapter three of Determinants, Gröbner Bases and
Cohomology by Bruns, Conca, Raicu, and Varbaro. The figures shown throughout these
notes are taken directly from this chapter. If you’re looking at this document and find the
material interesting, I would definitely recommend giving it a look.
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1 Motivation and Basics

Determinants get kind of unwieldy when we’re looking at matrices of intdeterminates, so it
would be very tricky to study the ideals of matrix minors we’ll discuss in this talk if we looked
at them explicitly. The following material provides a way of looking at the determinantal
rings and ideals that we’re interested in while avoiding this potential issue.

1.1 Definitions

We begin by setting up some notation. Let k be a commutative ring – we will actually want
it to be a field for most of the contents here, but these can be defined over any commutative
ring. Our starting point is a matrix of indeterminates

X =

X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

 .

We will usually assume that m ≤ n. These indeterminates are viewed as living inside the
ring k[X11, . . . , Xmn], which we will denote by k[X].

An important aspect of X for our purposes will be its t-minors, which are determinants
given by selecting t rows and t columns from X. We denote t-minors by

det(Xaibj) = [a1 . . . at|b1 . . . bt].

The size of the minor γ, denoted |γ|, is the number t of rows and columns extracted. In the
case where m ≤ n, the largest minors we can take are m-minors. For such minors we use
the notation [b1 . . . bm], since all m rows must be used. By convention, the empty minor is
set to 1 ∈ k.

We denote the ideal of k[X] generated by the t-minors of X by It(X), or just It if it’s
clear which X we are discussing. This is the definition of a determinantal ideal. A
determinantal ring is a ring of the form k[X]/It. Additionally, M(X) denotes the set of
all minors of X and Mt(X) those of size t.

In general we can replace k[X] with a Noetherian commutative ring R (with some extra
hypotheses) and It(X) with It(A), where A is an m × n matrix with entries in R. For our
purposes, we will focus on the k[X] case.

1.2 Bitableaux

A product of minors ∆ is called a bitableau. This is due to the association of these
products with Young tableaux. A Young tableau is a finite collection of cells arranged so
that they are aligned on one side with non-increasing numbers of boxes in each successive
row. Furthermore, each cell has an entry, usually from a totally ordered set. In this case, we
use the integers. These diagrams show up in a number of different places, but perhaps most
famously in correspondence with the irreducible representations of symmetric groups.

Now for the association with products of minors in k[X]. For

∆ = δ1 · · · δw, δi = [ai1 . . . aiti |bi1 . . . biti ]

2



Ethan Morgan Introduction to Determinantal Rings

Figure 1: The bitableau associated to the general example on page 2.

we associate the bitableau shown in Figure 1. So, we have a pair of Young Tableaux – one
for the row indices used in the corresponding minors, and one for the column indices. The
authors of the book say, very honestly, that the figures are made symmetric “for aesthetic
reasons.”

Recall that M(X) is the set of all minors of X. We have a partial order on M(X)
given by [a1 . . . at|b1 . . . bt] ⪯ [c1 . . . cu|d1 . . . du] if t ≥ u and ai ≤ ci, bi ≤ di for all i ≤ u. A
bitableau ∆ = δ1 · · · δw is said to be standard if δ1 ⪯ · · · ⪯ δw. This can be interpreted as
requiring the entries in each column to be nondecreasing from top to bottom.

2 Standard Bitableaux

2.1 The Straightening Law

We begin this section with the statement of the straightening law, which is probably the
central result of this presentation. This theorem comes in four parts, but the main takeaway
should be that every element of k[X] has a unique presentation as a k-linear combination of
standard bitableaux. In the following statement (and I think for the remainder of the notes),
we take k to be a field. This field k can, however, be replaced with a commutative ring and
the statement still holds.

Theorem 2.1 (Straightening Law). (1) The standard bitableaux form a basis of k[X] as
a k-vector space.

(2) (Straightening Relations) If the product γδ of two minors isn’t a standard bitableau, it
can be rewritten as

γδ =
∑

xiϵiηi, xi ∈ k, xi ̸= 0

where ϵiηi is a standard bitableau and ϵi ≺ γ, δ ≺ ηi.

(3) We can find the standard representation of any bitableau by applying the straightening
relations.

(4) If ∆ is a bitableau and Σ = σ1 · · ·σw is a standard bitableau appearing in its standard
representation, then σ1 ⪯ δ for all factors δ of ∆.
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The proof of Theorem 2.1 can be found in the aforementioned textbook. Although
Theorem 2.1 (1) states that the standard bitableaux give a basis for all k[X], we will focus
mostly on decomposing other bitableaux.

Example 2.2. The following is a nontrivial standard representation for m = 3, n = 6. Note
that we’re taking 3-minors, so since m = 3 we need only specify the column indices.

[1 4 6][2 3 5] = [1 3 5][2 4 6]− [1 2 5][3 4 6]− [1 2 3][4 5 6].

This computation isn’t very easy to check directly, but this is how it decomposes. ♢

In general, it’s not really possible to predict what standard bitableaux appear in a given
decomposition. However, we can say for sure that the bitableau T0 given by taking the
starting bitableau T and sorting its columns appears with multiplicity one. An example of
this sorting is found in Figure 2 below. This can be seen in Example 2.2 as well.

Figure 2: An example of determining T0 from a given bitableau T .

In summary, while the process is kind of complicated and not super easy to see, the
straightening law gives us a reliable way to decompose any element of k[X] into standard
bitableaux.

2.2 Determinantal Ideals

Next, we take a look at some of the applications of standard bitableaux when studying
determinantal ideals.

An ideal in a partially ordered set (M,≤) is a subset N so that for all y ∈ N , N also
contains all x ≤ y. Let N be an ideal in M(X) (the set of all minors of X), and consider
the ideal of k[X] given by I := Nk[X]. For δx ∈ I, any Γ = γ1 · · · γv in the standard
representation of δx has γ1 ⪯ δ, so γ1 ∈ N .

Proposition 2.3. In the situation described above, the standard bitableaux Γ = γ1 · · · γu with
γ1 ∈ N are a basis of I as a k-vector space.

Corollary 2.4. The standard bitableaux Γ = γ1 · · · γu so that |γ1| ≥ t are a basis of It as
a k-vector space, and the standard bitableaux ∆ = δ1 · · · δv with |δj| ≤ t − 1 for all j are
representatives of a basis for k[X]/It as a k-vector space.
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So, we have some nice results about generating sets for these ideals and rings. Next, we
take a look at products of determinantal ideals, and in particular their primary decomposi-
tions. As it turns out, there’s a nice way to approach these using the bitableaux diagrams
from earlier. First, some setup. The ideal p := It is prime in A := k[X]. We can get a
valuation on the fraction field of A by passing to P := Ap, letting q := pP , and setting

vp(x) = max{i : x ∈ qi}

where x ∈ P ̸= 0, and we set vp = ∞. It can be shown that vp is a discrete valuation on P
and can be extended to the fraction field of A.

In the case we have here, i.e. A = k[X], p = It, we denote vp by γt. It turns out that for
a minor δ, this evaluates as

γt(δ) =

{
0, |δ| < t

|δ| − t+ 1, |δ| ≥ t
.

We can extend this to sequences of integers by defining

γt(s1, . . . , sn) =
n∑

i=1

max{si − t+ 1, 0}

and with this convention, γt(|δ1|, . . . , |δn|) = γt(δ1 · · · δn). In terms of Young diagrams, this
is simply counting the number of cells in the rightmost t columns. For an example of this,
refer to Figure 3 below.

Figure 3: For this bitableau ∆, we have γ2(∆) = 4.

The ith symbolic power of p is
p(i) = piP ∩ A

For σ = (s1, . . . , sn), with each sj being a positive integer, we denote by Iσ the product of
ideals Is1 · · · Isn .

Theorem 2.5. One has
I
(j)
t =

∑
σ=(s1,...,su), γt(σ)≥j

Iσ.

Furthermore, I
(j)
t has a k-basis of all standard bitableaux Σ with γt(Σ) ≥ k.

Lastly, I’ll state the result for primary decomposition of products of determinantal ideals.
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Theorem 2.6. Let σ = (s1, . . . , sn) be a nonincreasing sequence of integers and suppose that
char k = 0 or char k > min{ri,m− ri, n− ri}. Then

Iσ =

s1⋂
t=1

I
(γt(σ))
t .

In particular, Iσ is integrally closed.

3 Representation Theory

Here, we briefly discuss a representation used to study determinantal rings and some neat
properties of it that result from the bitableaux perspective.

With X an m × n matrix of indeterminates in k[X] as usual, we define the group G :=
GLm(k)× GLn(k). To each (A,B) ∈ G, we assign the linear substitution on k[X] given by
the map

Xij 7→
(
AXB−1)ij

)
for each entry in X. This gives us a representation G → Aut(k[X]).

Using the same notation to describe shapes of bitableaux as in the previous section, we
consider shapes σ = (s1, . . . , sn) occurring in k[X], i.e. those with s1 ≤ min{m,n}. We
observe that any t-minor is mapped to a linear combination of t-minors by elements of G,
so the determinantal ideals are G-invariant subspaces.

In characteristic 0, we have a nice way of finding subspaces of k[X] that are G-invariant
and have a basis of standard bitableaux. A subspace V of k[X] is said to be defined by
shape if the standard bitableaux contained in V span V , and for any bitableau ∆, whether
∆ ∈ V or not depends only on the shape |∆|. When the characteristic of k is 0, V is defined
by shape if and only if it is G-invariant and has a basis of standard bitableaux. This does
not work in characteristic p.

4 Miscellaneous Curiosities

Here’s a quick list of a few connections that I can’t say I understand very well, but sound
somewhat interesting. I figured they might be worth including in case anybody in the
audience knows much about them.

� K[X] and K[Mm] are examples algebras with straightening law on the partially
ordered sets M(X) and Mm(X), respectively.

� The tools described up to this point are used later in the text to compute Gröbner
bases of determinantal ideals. It turns out that the set Mm of maximal minors of
X is a universal Gröbner basis of Im(X), i.e. a Gröbner basis with respect to every
monomial order.

� Determinantal rings are examples of Cohen-Macaulay rings. Wikipedia says that “un-
der mild assumptions,” a local ring is Cohen-Macaulay when it is a finitely generated
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free module over a regular local subring. A regular local ring is a Noetherian local
ring with its maximal ideal generated by the same number of elements as its Krull
dimension. Alternatively, a ring is Cohen-Macaulay if it is a Cohen-Macaulay module
over itself. A Cohen-Macaulay module is a module over a commutative noetherian
local ring which is finitely generated, nonzero, and its depth equals its Krull dimension.
Supposedly, these are “well understood in many ways,” and have some properties of a
smooth variety.
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