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On a new invariant for finite groups

Chris Cornwell, Megan Doring, L.-K. Lauderdale,

Ethan Morgan, and Nicholas Storr

In this article, we define a new invariant for finite groups, called the
action-genus. Let G be a finite group. Among all graphs Γ whose
automorphism group is isomorphic to G, define the action-genus
of G to be the minimal genus of a closed connected orientable sur-
face on which Γ can be cellularly embedded. Here, we elucidate
some basic properties for the action-genus of a finite group, estab-
lish the action-genus of a few infinite families of finite groups, and
then conclude with some open questions about the action-genus of
finite groups in general.
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1. Introduction

Throughout this article, all groups considered are finite and all graphs con-
sidered are finite and simple. The automorphism group of a graph Γ,
denoted AutΓ, is the set of adjacency preserving permutations of the ver-
tices of Γ. In 1936, König [20] questioned which groups could be realized
as the automorphism group of some graph. Three years later, Frucht [8] es-
tablished that every group may be realized as the automorphism group of
some graph. Naturally, this result gave rise to numerous extremal problems
in graph theory. Given a group G, there are infinitely many graphs whose
automorphism groups are isomorphic to G. Consequently, it is possible to
construct graphs with automorphism groups isomorphic to G with arbitrar-
ily large order, size, or genus. It is far more interesting to consider how
small a graph can be, and the concept of minimizing graph invariants under
certain symmetry restrictions is well-studied.

As an example, there are many results in the study of vertex-minimal
graphs with a prescribed automorphism group. For a group G, let α(G)
denote the minimum number of vertices among all graphs Γ such that
Aut Γ ∼= G. Babai [3] proved that if G is a group different from the cyclic
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group of order 3, 4, and 5, then α(G) ≤ 2|G|. (These three excluded cyclic
groups satisfy α(G) = 3|G|.) A direct consequence of the results due to
Hetzel [18] and Godsil [10, 11] established that Babai’s bound can actually
be sharpened for most groups. In particular, they proved that α(G) ≤ |G|
provided G is distinct from each of the following groups: an abelian group
of exponent greater than 2; an elementary abelian group of orders 4, 8, or
16; a generalized dicyclic group; and one of ten exceptional groups whose
orders are at most 32. In addition to the aforementioned bounds, the ex-
act value of α(G) has been computed for the following infinite families of
groups G: abelian groups [1, 25, 31]; hyperoctahedral groups [17]; symmet-
ric groups [27]; alternating groups of degree at least 13 [22]; generalized
quaternion groups [13]; dihedral groups [12, 14, 16, 23]; and quasi-abelian
and quasi-dihedral groups [21].

The idea of minimizing the size of a graph under certain symmetry
restrictions has also been considered. Let e(G,m) denote the minimum
number of edges among all graphs Γ with m vertices and AutΓ ∼= G; if no
such graphs exist, then consider e(G,m) to be undefined. For given group
G, the Minimal-Line Problem is to determine the value of e(G,m) for each
positive integer m. Erdös and Rényi [7] first posed this problem for graphs
that have no nontrivial automorphisms. In 1967, Quintas [26] solved the
Minimal-Line Problem for the identity group. Of course it is natural to
then consider the Minimal-Line Problem for nontrivial groups. The value of
e(G,m) is undefined if m < α(G). Moreover, if m ≥ α(G) and m− α(G) is
small, then the values of e(G,m) can vary greatly. However, for sufficiently
large values of m a certain stability is realized. McCarthy and Quintas [24]
proved that for each group G, there exists an integer M such that for all m ≥
M , it is possible to construct a graph on e(G,m) edges with automorphism
group isomorphic to G. Nevertheless, the exact value of e(G,m) is only
known in a few cases. In particular, e(G,m) has been computed for all
integers m provided G is nontrivial and isomorphic to one of the following
groups: a symmetric group [27]; the cyclic group of order 3 [9]; a dihedral
group of order 2n, where n is a prime power or twice a prime power [16]; or
a hyperoctahedral group [17].

In this article, we are interested in genus-minimal graph embeddings with
prescribed automorphism groups. While we have created a new invariant
on this topic, the idea of graph embeddings is not new and has received
much attention. Recall that the genus of a graph Γ, denoted γ(Γ), is the
smallest genus of all the orientable surfaces on which Γ can be embedded.
The difficultly of establishing γ(Γ) is well-known [5], and its complexity was
listed as one of the 12 most important open problems in [19]. The Graph
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Genus Problem asks the following question: given a graph Γ and a positive
integer n, does n exceed γ(Γ)? Thomassen [32, 33] established this problem
is NP-complete for general graphs and cubic graphs, and that finding the
minimum genus of a graph is NP-hard.

Motivated by the aforementioned research on vertex-minimal graphs and
edge-minimal graphs with prescribed automorphism groups, we define the
action-genus of a group below. Note that the genus of a group is similar in
name only and an interested reader can see [34] for more information on the
genera of groups.

Definition 1.1. Let G be a group. Among all graphs Γ with AutΓ ∼= G,
define the action-genus of G, denoted γa(G), to be the minimal genus of a
closed connected orientable surface on which Γ can be cellularly embedded.

The definitions of a closed connected orientable surface and a cellular
embedding are stated in Section 2. The action-genus of a group is well-posed
because every group may be realized as the automorphism group of some
connected graph [8], and every such graph has a cellular embedding in a
surface [15]. Thus, every group has an action-genus. This group invariant
can be ambitious to compute because, as mentioned above, calculating the
genus of a graph is hard and here the genus of all graphs with a prescribed
automorphism group needs to be considered. Of course, the only exception
to this occurs when the action-genus of a group is 0; in this case, establish-
ing one connected planar graph with the prescribed automorphism group is
sufficient. As an example, let n ≥ 3 be an integer and consider the dihedral
group of order 2n. Since the cycle graph of length n can be cellularly em-
bedded in the sphere and has automorphism group isomorphic to D2n, we
have that γa(D2n) = 0.

This article is organized as follows. In Section 2, we develop the back-
ground and notation necessary to compute the action-genus of some infinite
families of groups; as the action-genus of a group G is a novel group invari-
ant, it is natural to investigate γa(G) for some simple cases and we do so
in this section. In Section 3, we will establish the action-genus of nontrivial
abelian groups. The results of Section 4 establish the action-genus for gener-
alized quaternion groups. Finally, we pose some open questions throughout
Section 5, which involve the action-genus of groups in general as well as two
extensions of the action-genus of groups.

2. Background and examples

In this article, we are only considering closed connected orientable surfaces.
Recall that a closed surface is a 2-dimensional compact topological mani-
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fold without boundary. Such a surface S is connected provided there is a

continuous path on S between any two points on S. Finally, S is orientable

provided an anticlockwise sense of rotation is preserved by traversing any

simple closed curve on S once. It is well-known that every closed connected

orientable surface is homeomorphic to a sphere or a connected sum of tori

(see, for example, [15]); these homeomorphism classes are depicted in Fig-

ure 1. The genus of such a surface is the number of tori needed to obtain

it through the connected sum operation, where the genus of the sphere is

defined to be 0.

Figure 1: Homeomorphism classes of closed connected orientable surfaces.

The definition of action-genus of a group requires the associated graphs

to be cellularly embedded in the aforementioned surfaces. A graph Γ is

embedded on a surface S provided Γ can be represented in S where the

vertices of Γ are distinct points in S and each edge in Γ is a simple arc

connecting its two ends such that no two edges intersect (except possibly at

a common end). For example, the complete graph on five vertices, denoted

K5, cannot be embedded on the sphere. However, it can be embedded on

the torus; one such embedding is depicted in Figure 2.

Assume that Γ is a graph embedded on a closed connected orientable

surface S. In this case, Γ is a topological subspace of S, and thus has a

complement. This embedding is cellular if the complement of Γ in S is

For the author's personal use only.

For the author's personal use only.



On a new invariant for finite groups 117

Figure 2: An embedding of K5 on the torus.

homeomorphic to a disjoint union of open disks. As an example, the cycle
graph of length 5 (drawn as a pentagon) can be cellularly embedded on the
sphere as its complement is homeomorphic to a disjoint union of two open
disks. However, the graph Γ = C5 ∪ K4, which has 9 vertices, 11 edges,
and is depicted in Figure 3, has no cellular embedding on the sphere. It is

Figure 3: The graph Γ = C5 ∪ K4 which as no cellular embedding on the
sphere.

not possible to cellularly embed Γ on the sphere because, in any spherical
embedding, there is a face of Γ that is not homeomorphic to an open disk.
Of note, an embedding of a graph on the sphere is cellular if and only if
the graph is connected. However, an embedding of a connected graph on a
surface of positive genus may or may not be cellular. For example, Figure 4
depicts two embeddings of the complete graph on four vertices, denoted K4,
on the torus. The embedding in Figure 4(a) is not cellular as one of the faces
is homeomorphic to a cylinder; Figure 4(b) depicts a cellular embedding of
K4 on the torus.

With all the necessary terminology for Definition 1.1 in hand, we con-
tinue with some more examples of the action-genus of groups.

Example 2.1. For n ∈ Z with n ≥ 3, let Sn denote the symmetric group
on n symbols. To compute the value of γa(Sn), we must consider all graphs
Γ with AutΓ ∼= Sn. Certainly, one such graph that comes to mind is Kn,
the complete graph on n vertices. However, Ringel and Youngs [30] proved
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Figure 4: Two embeddings of K4 on the torus.

that ⌈
(n− 3)(n− 4)

12

⌉

is the minimal genus of a surface on which Kn can be cellularly embedded.
Another graph with automorphism group isomorphic to Sn is the comple-
ment of Kn — the empty graph on n vertices; but this graph cannot be
cellularly embedded on any surface because it is disconnected. Thus, we
turn our attention to the star graph on n + 1 vertices. This graph is de-
picted in Figure 5, and its automorphism group is isomorphic to Sn. Since

Figure 5: A graph with automorphism group isomorphic to Sn.

the star graph is planar and connected, it can be cellularly embedded on the
sphere. Therefore, γa(Sn) = 0.

Notice that Definition 1.1 does not require the cellular embedding to be
closed (a cellular embedding of a graph in a surface is closed if each face
is bounded by a cycle in the graph). In the next example, we will compute
the action-genus of two alternating groups.

Example 2.2. Consider the alternating group on 4 symbols, denoted A4.
Define Γ to be the graph with 36 vertices and 66 edges depicted in Figure 6.
A quick computation in SageMath [6] proves that the automorphism group
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of Γ is generated by the permutations

σ := (1, 10, 31)(2, 11, 32)(3, 12, 33)(4, 13, 34)(5, 14, 35)(6, 15, 36)(7, 16, 28)

(8, 17, 29)(9, 18, 30)(19, 22, 25)(20, 23, 26)(21, 24, 27)

and

τ := (1, 16)(2, 17)(3, 18)(4, 10)(5, 11)(6, 12)(7, 13)(8, 14)(9, 15)(19, 28)

(20, 29)(21, 30)(22, 31)(23, 32)(24, 33)(25, 34)(26, 35)(27, 36),

and that A4
∼= 〈σ, τ〉. Since Γ is planar and connected, it can be cellularly

Figure 6: A graph with automorphism group isomorphic to A4.

embedded on the sphere. Therefore, γa(A4) = 0.
Let Γ9 be the induced subgraph of Γ on the vertices in {1, 2, . . . , 9}.

The graph Γ was constructed by replacing each vertex of a tetrahedron with
Γ9. In a similar way, if each vertex on a dodecahedron is replaced by Γ9,
the resulting graph will have 180 vertices and 330 edges. Its automorphism
group is isomorphic to the alternating group on 5 symbols, denoted A5, and
thus γa(A5) = 0.

Part of calculating the action-genus for an infinite family of groups
{Gn}∞n=0 involves constructing infinitely many graphs Γn with Aut(Γn) ∼=
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Gn. Establishing the automorphism groups of Γn for all n ∈ N requires re-
sults on both graphs and groups. We review these necessary results now.
For the graph Γ, let V (Γ) and E(Γ) denote the vertex set of Γ and edge
set of Γ, respectively. An edge between the vertices u and v in Γ is denoted
[u, v]. In this case, we say that the ends of the edge [u, v] are u and v, and
that u and v are adjacent or neighbors in Γ. If S ⊂ V (Γ), then the in-
duced subgraph of Γ on S is the graph whose vertex set is S and whose
edge set consists of all edges in E(Γ) that have both ends in S. The graph
Γ − {v} denotes the induced subgraph on V (Γ)\{v}. In order to establish
the automorphism group of a given graph Γ, we will use the Orbit-Stabilizer
Theorem, which states the relationship between the order of Aut Γ, the size
of the orbit of a vertex v in Aut Γ, and the order of the stabilizer of v in
Aut Γ. Specifically, for each v ∈ V (Γ), the orbit of v is

O(v) := {σ(v) : σ ∈ AutΓ}

and the stabilizer of v is

stab(v) := {σ ∈ AutΓ : σ(v) = v};

the Orbit-Stabilizer Theorem states that |AutΓ| = | O(v)|·| stab(v)|. Lastly,
we require the so-called orbit of an edge in AutΓ. Let SV (Γ) denote the
symmetric group on the set V (Γ). If G is a subgroup of the permutation
group SV (Γ), then for vertices u, v ∈ V (Γ) the set

OG{u, v} = {[σ(u), σ(v)] : σ ∈ G}

defines the edge orbit of [u, v] ∈ E(Γ). With these preliminary results in
hand, we can now compute the action-genus of nontrivial abelian groups.

3. Abelian groups

In this section, we will prove that the action-genus of all nontrivial abelian
groups G is 0. To this end, we will construct a graph ΓG with Aut(ΓG) ∼= G
that can be cellularly embedded on the sphere. For convenience of the reader,
as we construct this graph ΓG in Definition 3.1 below, a planar embedding
is described; since ΓG is a plane connected graph it has a corresponding
cellular embedding on the sphere.

Definition 3.1. Let n, i ∈ Z
+ with n ≥ 2. Define the graph Γ(n, i) on

3n+ in vertices with vertex set

V
(
Γ(n, i)

)
=

{
vi1, v

i
2, . . . , v

i
3n+in

}
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and 4n+ in edges as follows. First, construct a regular 2n-gon and sequen-

tially label its vertices vi1, v
i
2, . . . , v

i
2n. Second, for each j ∈ {1, 2, . . . , n}, place

the vertex vi2n+j outside of the 2n-gon equidistant from the vertices vi2j−1

and vi2j . Finally, to each vertex vik with k ∈ {2n+ 1, 2n+ 2, . . . , 3n}, attach
a path of length i that extends radially outward with respect to the center

of the 2n-gon; for each k ∈ {2n + 1, 2n + 2, . . . , 3n}, sequentially label the

vertices in each path vik+n, v
i
k+2n, . . . , v

i
k+in starting at the vertex closest to

vertex vik. The graphs Γ(5, 3) and Γ(8, 1) are depicted in Figure 7(a) and

Figure 7(b), respectively.

Figure 7: The graphs Γ(5, 3) and Γ(8, 1) constructed in Definition 3.1.

Let G be a nontrivial abelian group. By the Fundamental Theorem of

Finitely Generated Abelian Groups, there exists integers a1, a2, . . . , am ≥ 2

such that

G ∼= Za1
× Za2

× · · · × Zam
,

where Zaj
denotes the cyclic group of order aj and j ∈ {1, 2, . . . ,m}. Define

the graph

Γ̂G = Γ(a1, 1) ∪ Γ(a2, 2) ∪ · · · ∪ Γ(am,m).

Finally, define ΓG to be the graph with vertex set V (ΓG) = {0} ∪ V
(
Γ̂G

)
and edge set

E(ΓG) = E
(
Γ̂G

)
∪

{
[vjkj

, 0] : ∀j ∈ {1, 2, . . . ,m} and kj ∈ {1, 3, . . . , 2aj−1}
}
.
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Note that, by construction, Γ(n, i) is a planar graph. Hence, Γ̂G is comprised

of m planar components and is also planar. Since the graph ΓG was then

constructed by connecting vertex 0 to aj vertices in each component Γ(aj , j),

the graph ΓG is connected. Moreover, these additional edges of E(ΓG) in

E(ΓG) \E
(
Γ̂G

)
can clearly be included without crossings, yielding a planar

embedding of ΓG.

In the forthcoming lemma, we will prove that the automorphism groups

of certain subgraphs of ΓG − {0} are cyclic.

Lemma 3.2. Assume that G is a nontrivial abelian group, and write

G ∼= Za1
× Za2

× · · · × Zam
,

where a1, a2, . . . , am ≥ 2 are integers. Let ΓG be the graph constructed in

Definition 3.1. For each j ∈ {1, 2, . . . ,m}, the automorphism group of the

induced subgraph of ΓG on the vertices in {0}∪
{
vj1, v

j
2, . . . , v

j
3aj+iaj

}
is cyclic

of order aj.

Proof. For each j ∈ {1, 2 . . . ,m}, let Γ̄G(j) denote the induced subgraph of

ΓG on the vertices in {0} ∪
{
vj1, v

j
2, . . . , v

j
3aj+iaj

}
. The permutation

σj : =
(
vj1, v

j
3, . . . , v

j
2aj−1

)(
vj2, v

j
4, . . . , v

j
2aj

)
j∏

k=0

(
vj2aj+1+kaj

, vj2aj+2+kaj
, . . . , vj3aj+kaj

)

which composes of j+3 cycles of length aj , preserves the adjacency relations

of ΓG and thus is an automorphism Γ̄G(j) with order aj . As a result, Zaj
∼=

〈σj〉 ≤ Aut
(
Γ̄G(j)

)
for each j ∈ {1, 2 . . . ,m}. We will invoke the Orbit-

Stabilizer Theorem below to prove that Aut
(
Γ̄G(j)

)
= 〈σj〉.

Note that the vertices in Γ̄G(j)− {0} have degree at most 4. Moreover,

each vertex in
{
vj1, v

j
3, . . . , v

j
2aj−1

}
has degree 4 in ΓG with at least three

degree-3 neighbors. Since vertex 0 is only adjacent to vertices of degree 4,

it does not lie in the same orbit as vj1, v
j
3, . . . , v

j
2aj−1 under the action of

Aut
(
Γ̄G(j)

)
. Thus, the set

{
vj1, v

j
3, . . . , v

j
2aj−1

}
actually forms an orbit of

Aut
(
Γ̄G(j)

)
because the action of σj on these vertices is transitive. By the

Orbit-Stabilizer Theorem,

(1)
∣∣Aut

(
Γ̄G(j)

)∣∣ = ∣∣O (
vj1

)∣∣ · ∣∣ stab (
vj1

)∣∣ = aj ·
∣∣ stab (

vj1
)∣∣,

For the author's personal use only.

For the author's personal use only.



On a new invariant for finite groups 123

and so we examine stab
(
vj1

)
. Let ϕ ∈ stab

(
vj1

)
≤ Aut

(
Γ̄G(j)

)
, so that

ϕ(vj1) = vj1. The neighbors of vj1 in ΓG form an invariant set under ϕ; in
other words,

ϕ
({

0, vj2, v
j
2aj

, vj2aj+1

})
=

{
0, vj2, v

j
2aj

, vj2aj+1

}

and the induced subgraph of ΓG on the vertices 0, vj1, v
j
2, v

j
2aj

, and vj2aj+1

is depicted in Figure 8. Notice that ϕ(0) = 0 because 0 is the only vertex

Figure 8: The induced subgraph on the vertex vj1 and its neighbors.

in Γ̄G(j) all of whose neighbors have degree 4. The vertex vj1 has only one

neighbor, namely vj2aj+1, that is adjacent to a vertex of degree at most 2,

which implies ϕ(vj2aj+1) = vj2aj+1. Consequently, both vertices vj2 and vj2aj

are fixed by ϕ as vj2 is adjacent to the fixed vertex vj2aj+1 and vj2aj
is not.

It follows that ϕ(vji ) = vji for all i ∈ {1, 2, . . . , 2aj} because these vertices
compose the only 2aj-cycle in Γ̄G(j) whose degree sequence alternates be-
tween 4 and 3. In turn, ϕ then fixes all other vertices in Γ̄G(j). Therefore, ϕ
is the identity element of Aut

(
Γ̄G(j)

)
and

∣∣ stab (
vj1

)∣∣ = 1; by Equation (1)
we have that |Aut(Γ̄G(j))| = aj . The desired result now follows because
Zaj

∼= 〈σj〉 ≤ Aut
(
Γ̄G(j)

)
and |Zaj

| = aj = |〈σj〉|.
We will use this lemma to prove that the graph ΓG constructed in Defi-

nition 3.1 has the proper automorphism group.

Proposition 3.3. Let G be a nontrivial abelian group. The automorphism
group of the graph ΓG constructed in Definition 3.1 is isomorphic to G.

Proof. Since G is a nontrivial abelian group, there exists integers

a1, a2, . . . , am ≥ 2

such that

G ∼= Za1
× Za2

× · · · × Zam
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by the Fundamental Theorem of Finitely Generated Abelian Groups. Define
the permutation

σj : =
(
vj1, v

j
3, . . . , v

j
2aj−1

)(
vj2, v

j
4, . . . , v

j
2aj

)
j∏

k=0

(
vj2aj+1+kaj

, vj2aj+2+kaj
, . . . , vj3aj+kaj

)

for each j ∈ {1, 2, . . . ,m}. Let ΓG be the graph constructed in Definition 3.1;
σj preserves the adjacency relations of ΓG and thus is a automorphism of
ΓG with order aj . As a result, 〈σ1, σ2, . . . , σm〉 ≤ Aut(ΓG), and since G ∼=
〈σ1, σ2, . . . , σm〉, it suffices to prove that |Aut(ΓG)| = |G|.

Since vertex 0 in ΓG is the only vertex whose neighbors all have degree 4,
it is fixed under any automorphism of ΓG. Notice that Γ̂G can be obtained by
deleting vertex 0 in ΓG, and the subgraphs Γ(aj , j), where j ∈ {1, 2, . . . ,m},
are the m components of Γ̂G. We claim that no two components have the
same number of vertices of degree 1 and the same number of vertices of
degree 2 — proving that each component is invariant under every automor-
phism of ΓG. To this end, recall that the component Γ(aj , j) has aj vertices
of degree 1. If ak = a� for some distinct k, � ∈ {1, 2, . . . ,m}, then Γ(ak, k)
has ak(k − 1) vertices of degree 2, while Γ(a�, �) has a�(� − 1) vertices of
degree 2. It follows that ak(k− 1) �= a�(�− 1) and each component is invari-
ant under every automorphism of ΓG. Therefore, these components are the
unions of vertex orbits in Aut(ΓG).

Now consider the induced subgraph of ΓG on the vertices in {0}∪Γ(a1, 1),
denoted by Γ̄G(1). By Lemma 3.2, Aut

(
Γ̄G(1)

)
is cyclic of order a1, and so

the vertices v11, v
1
3, . . . , v

1
2a1−1 compose an orbit of Aut(ΓG) because of the

transitive action on them by σ1. By the Orbit-Stabilizer Theorem,

(2) |Aut(ΓG)| =
∣∣O (

v11
)∣∣ · ∣∣ stab (

v11
)∣∣ = a1 ·

∣∣ stab (
v11

)∣∣.
Thus, we will examine the subgroup stab

(
v11

)
of Aut(ΓG). The proof of

Lemma 3.2 established that Aut
(
Γ̄G(1)

)
is generated by the permutation

σ1, and thus any element of stab
(
v11

)
will fix all of Γ(a1, 1). Consequently,

we examine the action of stab(v11) on the rest of ΓG. Since σj fixes v11 for
all j ∈ {2, 3, . . . ,m}, we have that σj ∈ stab(v11) provided j �= 1. Moreover,
the automorphism group of the induced subgraph of ΓG on the vertices in
{0}∪

{
vj1, v

j
2, . . . , v

j
3aj+iaj

}
is cyclic of order aj by Lemma 3.2. Because each

subgraph Γ(aj , j) is invariant,
∣∣ stab (

v11
)∣∣ = a2a3 · · · am and Equation (2)

implies

|Aut(ΓG)| = a1 ·
∣∣ stab (

v11
)∣∣ = a1a2a3 · · · am = |G|.
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Since we previously established that

G ∼= 〈σ1, σ2, . . . , σm〉 ≤ Aut(ΓG),

the result now follows.

With these results in hand, we are now able to prove that the action-
genus of every nontrivial abelian group is 0.

Theorem 3.4. If G is a nontrivial abelian group, then γa(G) = 0.

Proof. The graph ΓG constructed in Definition 3.1 satisfies Aut(ΓG) ∼= G
by Proposition 3.3. Since ΓG is planar and connected by construction, it can
be cellularly embedded on the sphere. Therefore, γa(G) = 0, as desired.

Next, we will establish an infinite family of groups with positive action-
genus.

4. Generalized quaternion groups

In this section, we will establish an infinite family of groups with positive
action-genus. For n ≥ 4 an integer, let Q2n denote the generalized quaternion
group of order 2n. We will use the following presentation of Q2n :

(3) Q2n =
〈
σ, τ : σ2n−1

= 1 = τ4, τστ−1 = σ−1, σ2n−2

= τ2
〉
.

It is an easy exercise to prove that every element of Q2n can be expressed
as σiτ j for i ∈ {0, 1, . . . , 2n−1 − 1} and j ∈ {0, 1}; additionally, σ2n−2

= τ2

is the only element of order 2 in Q2n , and every element in the set Q2n\〈σ〉
has order 4.

To prove that γa(Q2n) is positive, we proceed as follows. In Defini-
tion 4.1, we construct a graph Γn for all n ≥ 4. The results of Proposition 4.2
prove that Aut(Γn) ∼= Q2n , and we construct a cellular embedding of Γn on
the torus in Proposition 4.3. An illustrative example for Definition 4.1 and
Proposition 4.3 is given in Example 4.4 when n = 5. Finally, Theorem 4.5
will prove that γa(Q2n) = 1 for all n ≥ 4.

Definition 4.1. Assume that n ≥ 4 is an integer. Define the permutations

σn := (1, 2, . . . , 2n−1)(2n−1 + 1, 2n−1 + 2, . . . , 2n)

(2n + 1, 2n + 2, . . . , 3 · 2n−1)(3 · 2n−1 + 1, 3 · 2n−1 + 2, . . . , 2n+1)

and τn := τ1τ2, where
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τ1 := (1, 2n−1+1, 2n−2+1, 3·2n−2+1)

2n−2∏
i=2

(i, 2n+2−i, 2n−2+i, 3·2n−2+2−i)

and τ2 is obtained by adding 2n to each entry in τ1. Set G = 〈σn, τn〉, and
notice that G is a subgroup of S2n+1 . It is easily verified that σn and τn
satisfy the relations of Q2n given in Equation (3) and thus generate a group
isomorphic to Q2n . Define the graph Γn on 2n+1 vertices with V (Γn) =
{1, 2, . . . , 2n+1} and where E(Γn) contains the following four edge orbits:

OG{1, 2n−1 + 1}, OG{1, 2n + 1}, OG{1, 2n + 2}, and OG{1, 3 · 2n−1 + 1}.

Each edge orbit of contains 2n edges, and thus Γn has size 4 · 2n = 2n+2.

The graph Γ5 is constructed in Example 4.4 and depicted in Figure 12.
In the forthcoming proposition, we will establish the automorphism group
of this graph Γn for all n ≥ 4.

Proposition 4.2. For n ≥ 4, the graph Γn constructed in Definition 4.1
has automorphism group isomorphic to Q2n.

Proof. Let Γn, σn, and τn be as given in Definition 4.1, and recall that
〈σn, τn〉 ∼= Q2n . Since the edges in Γn are the images of the edges

[1, 2n−1 + 1], [1, 2n + 1], [1, 2n + 2], and [1, 3 · 2n−1 + 1]

under the elements of 〈σn, τn〉, the permutations σn and τn will preserve
all adjacency relations of Γn. Therefore, Q2n ∼= 〈σn, τn〉 ≤ Aut(Γn), and it
suffices to prove that |Aut(Γn)| = 2n. To this end, partition V (Γn) into the
following two sets:

V1 := {1, 2, . . . , 2n} and V2 := {2n + 1, 2n + 2, . . . , 2n+1}.

The vertices in V1 and V2 have degree 5 and 3, respectively. Consequently, V1

and V2 are invariant sets under the action of Aut(Γn). Since 〈σn, τn〉 ∼= Q2n

acts transitively on the sets V1 and V2, the orbits of Aut(Γn) are V1 and V2,
and

(4) |Aut(Γn)| = | O(1)| · | stab(1)| = 2n · | stab(1)|

by the Orbit-Stabilizer Theorem.
To prove that | stab(1)| = 1, let ϕ ∈ stab(1) ≤ Aut(Γn). Since 1 is fixed

by ϕ, its neighbors compose an invariant set under ϕ; in other words, the
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set

{2n−1 + 1, 3 · 2n−2 + 1, 2n + 1, 2n + 2, 3 · 2n−1 + 1}
is fixed setwise by ϕ. Consider the induced subgraph of Γn on vertex 1 and
its neighbors, denoted by Γ̄n(1), which is depicted in Figure 9. Since 2n + 2

Figure 9: The induced subgraph of Γn on vertex 1 and its neighbors.

is the only degree-1 vertex in Γ̄n(1), ϕ(2
n + 2) = 2n + 2. It follows that

the sets of vertices {2n−1 + 1, 3 · 2n−2 + 1} and {2n + 1, 3 · 2n−1 + 1} are
invariant under ϕ because the first set is contained in V1 and the latter set
is contained in V2. To establish that these sets are actually fixed pointwise
by ϕ, consider the induced subgraph of Γn on the vertices at most distance
2 from vertex 1; this graph is depicted in Figure 10. Since vertex 7 · 2n−2 is

Figure 10: The induced subgraph of Γn on the vertices at most distance 2
from vertex 1.

the only vertex with degree 1 in this subgraph, it is fixed by ϕ. It follows
that its only neighbor satisfies ϕ(3 · 2n−2 +1) = 3 · 2n−2 +1 and thus all the
neighbors of 1 are fixed under ϕ. Lastly, note that ϕ(2) = 2 because in this
subgraph it is the only neighbor of the fixed vertex 2n + 2 with a neighbor
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of degree 2. In summary, ϕ(1) = 1 implies that vertices 2, 2n−1 + 1, 2n + 1,
and 3 · 2n−1 + 1 are fixed by ϕ.

Repeating the argument above with vertex 1 replaced by vertex 2, which
is possible as these vertices lie in the same orbit under Aut(Γn) and ϕ(2) = 2,
yields that vertices 3, 2n−1 + 2, 2n + 2, and 3 · 2n−1 + 2 are fixed by ϕ.
Continuing this process by replacing i with i + 1 for i ∈ {3, 4, . . . , 2n−1},
proves that all vertices of Γn are fixed by ϕ ∈ stab(1). Therefore, ϕ is
the trivial automorphism of Aut(Γn) and | stab(1)| = 1. Equation (4) then
implies that |Aut(Γn)| = 2n. Because we previously established that Q2n ∼=
〈σn, τn〉 ≤ Aut(Γn), it follows that Aut(Γn) ∼= Q2n for all n ≥ 4.

The graph Γn constructed in Definition 4.1, which satisfies Aut(Γn) ∼=
Q2n by Proposition 4.3, will be used to establish that γa(Q2n) ≤ 1. In the
proposition that follows, we will cellularly embedded Γn on the torus.

Proposition 4.3. The graph Γn constructed in Definition 4.1 can be cellu-
larly embedded on the torus for all n ≥ 4.

Proof. Since graph embeddings on the torus can be difficult to visualize,
in this proof we will utilize the planar representation of the torus (which
depicts the torus through identifying the opposite sides of a rectangle). To
describe our embedding of Γn for all n ≥ 4, we first discuss the placement of
the vertices of Γn in the rectangle and then discuss how to draw the edges
of Γn.

Partition the vertices of Γn into eight rows of size 2n−2, where each row
contains the following vertices.

Row 1: 1, 2, . . . , 2n−2

Row 2: 2n + 1, 2n + 2, . . . , 5 · 2n−2

Row 3: 3 · 2n−1 + 1, 3 · 2n−1 + 2, . . . , 7 · 2n−2

Row 4: 2n−1 + 1, 2n−1 + 2, . . . , 3 · 2n−2

Row 5: 2n−2 + 1, 2n−2 + 2, . . . , 2n−1

Row 6: 5 · 2n−2 + 1, 5 · 2n−2 + 2, . . . , 3 · 2n−1

Row 7: 7 · 2n−2 + 1, 7 · 2n−2 + 2, . . . , 2n+1

Row 8: 3 · 2n−2 + 1, 3 · 2n−2 + 2, . . . , 2n

In the rectangle representing the torus, fix a positive distance d and draw
consecutively labelled vertices within each row at distance d apart such that:

1. Row a is positioned above Row a+ 1 for all a ∈ {1, 2, . . . , 7};
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2. Vertices 5·2n−2+1 and 3·2n−2+1 are aligned vertically and lie farthest
to the left;

3. Vertices 2n+1, 2n−1+1, 2n−2+1, and 7·2n−2+1 lie on the perpendicular
bisector of the vertices 5 · 2n−2 + 1 and 5 · 2n−2 + 2; and

4. Vertices 1 and 3 · 2n−1 + 1 align vertically with vertex 5 · 2n−2 + 2.

In this case, the vertices in Rows 1 and 3 are aligned vertically, the vertices
in Rows 2, 4, 5, and 7 are aligned vertically, and the vertices in Rows 6 and
8 are aligned vertically.

To describe the placement of the edges in Γn for this embedding, we will
partition E(Γn) into two sets. Define

E1 :=
{
σiτ [1, 2n−1 + 1], σiτ [1, 3 · 2n−1 + 1] : i ∈ {2n−2, . . . , 2n−1 − 1}

}
∪

{
ω[1, 2n + 2] : ω ∈

{
σ2n−2−1, σ2n−2

τ, σ2n−1−1, τ
}}

⊂ E(Γn)

and E2 := E(Γn)\E1. The set E1 will contain the edges of Γn that cross
a boundary of the rectangle that represents the torus in our embedding,
while E2 contains all other edges of Γn, which will cross no boundary of
the rectangle. We note that E1 contains 2n−1 + 4 of the 2n+2 edges of Γn.
Draw each edge [u, v] ∈ E2 to lie along the line segment that represents the
shortest distance between vertices u and v. This will result in three rows of
2n−2− 1 cycles of length 6 each with an additional cord, which are depicted
in Figure 11, the path on vertices 1 and 2n + 1, and the three triangles

(1, 2n−1 + 1, 3 · 2n−1 + 1), (2n−1 + 1, 5 · 2n−2 + 1, 2n−2 + 1),

Figure 11: In the proof of Proposition 4.3: The 3(2n−2 − 1) subgraphs of Γn

created by the inclusion of the edges in E2, where i ∈ {1, 2, . . . , 2n−2 − 1} ∪
{2n−2 + 1, 2n−2 + 2, . . . , 2n−1 − 1} and j ∈ {1, 2, . . . , 2n−2 − 1}.

For the author's personal use only.

For the author's personal use only.



130 Chris Cornwell et al.

and

(2n−2 + 1, 3 · 2n−2 + 1, 7 · 2n−2 + 1).

Next, the 2n−1 edges of E1 in

{
σiτ [1, 2n−1 + 1], σiτ [1, 3 · 2n−1 + 1] : i ∈ {2n−2, 2n−2 + 1, . . . , 2n−1 − 1}

}

can be drawn without crossings over the identified top and bottom edges of
the rectangle that represents the torus. Reading from left to right, note that
these edges will cross this boundary of the rectangle in the following order:

σ2n−2

τ [1, 3 · 2n−1 + 1], σ2n−2

τ [1, 2n−1 + 1], σ2n−2+1τ [1, 3 · 2n−1 + 1],

σ2n−2+1τ [1, 2n−1 + 1], . . . , σ2n−1−1τ [1, 3 · 2n−1 + 1], σ2n−1−1τ [1, 2n−1 + 1].

Finally, we consider the four remaining edges of E1, namely those in

{
ω[1, 2n + 2] : ω ∈

{
σ2n−2−1, σ2n−2

τ, σ2n−1−1, τ
}}

.

The edges σ2n−1−1[1, 2n+2] and τ [1, 2n+2] can be included in our embedding
of Γn without crossings over the identified left and right sides of the rectan-
gle. Starting at vertex σ2n−2−1(1) = 2n−2, draw the edge σ2n−2−1[1, 2n + 2]
over the top of the rectangle, then over the right side of the rectangle end-
ing at vertex σ2n−2−1(2n + 2) = 5 · 2n−2 + 1. Lastly, starting at the ver-
tex σ2n−2

τ(1) = 3 · 2n−2 + 1, without any edge crossings draw the edge
σ2n−2

τ [1, 2n + 2] over the bottom of the rectangle, then over the left side of
the rectangle ending at vertex σ2n−2

τ(2n + 2) = 7 · 2n−2. Since all faces in
this embedding of Γn are polygons, it is a cellular embedding for all n ≥ 4,
as desired.

Before proving the main result of this section, we give an illustrative
example of Definition 4.1 and Proposition 4.3 when n = 5.

Example 4.4. Assume that n = 5. The permutations σ5 and τ5 stated in
Definition 4.1 are as follows.

σ5 := (1, 2, . . . , 16)(17, 18, . . . , 32)(33, 34, . . . , 48)(49, 50, . . . , 64)

τ1 := (1, 17, 9, 25)

8∏
i=2

(i, 34− i, 8 + i, 26− i)

= (1, 17, 9, 25)(2, 32, 10, 24)(3, 31, 11, 23)(4, 30, 12, 22)

(5, 29, 13, 21)(6, 28, 14, 20)(7, 27, 15, 19)(8, 26, 16, 18)
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τ2 := (33, 49, 41, 57)(34, 64, 42, 56)(35, 63, 43, 55)(36, 62, 44, 54)

(37, 61, 45, 53)(38, 60, 46, 52)(39, 59, 47, 51)(40, 58, 48, 50)

τ5 := τ1τ2

The graph Γ5 has 64 vertices with vertex set V (Γ5) = {1, 2 . . . , 64}. Since
G = 〈σ5, τ5〉 ∼= Q32 is a subgroup of S64, the 128 edges of Γ5 are

E(Γ5) = OG{1, 17} ∪ OG{1, 33} ∪ OG{1, 34} ∪ OG{1, 49}.

As an example, the edge orbit

OG{1, 17} = {[ω(1), ω(17)] : ω ∈ G = 〈σ5, τ5〉}

contains 32 edges; these edges are obtained by applying each of the elements
in G, namely σ0

5 = 1, σ5, σ
2
5, . . . , σ

15
5 , τ5, σ5τ5, σ

2
5τ5, . . . , σ

15
5 τ5, to the edge

[1, 17] to obtain the edges

[1, 17], [2, 18], [3, 19], [4, 20], [5, 21], [6, 22], [7, 23], [8, 24],

[9, 25], [10, 26], [11, 27], [12, 28], [13, 29], [14, 30], [15, 31], [16, 32],

[9, 17], [10, 18], [11, 19], [12, 20], [13, 21], [14, 22], [15, 23], [16, 24],

[1, 25], [2, 26], [3, 27], [4, 28], [5, 29], [6, 30], [7, 31], [8, 32],

respectively. The graph Γ5 is depicted in Figure 12; its automorphism group
is isomorphic to Q32 by Proposition 4.2.

Next, we will use the process described in the proof of Proposition 4.3
to embed Γ5 in the torus. Partition the vertices of Γ5 into eight rows of size
8, where each row contains the following vertices.

Row 1: 1, 2, 3, 4, 5, 6, 7, 8 Row 5: 9, 10, 11, 12, 13, 14, 15, 16

Row 2: 33, 34, 35, 36, 37, 38, 39, 40 Row 6: 41, 42, 43, 44, 45, 46, 47, 48

Row 3: 49, 50, 51, 52, 53, 54, 55, 56 Row 7: 57, 58, 59, 60, 61, 62, 63, 64

Row 4: 17, 18, 19, 20, 21, 22, 23, 24 Row 8: 25, 26, 27, 28, 29, 30, 31, 32

In the rectangle representing the torus, fix a positive distance d and draw
the consecutively labelled vertices within each row at distance d apart with:

1. Vertices 41 and 25 aligned vertically and positioned farthest to the
left;

2. Vertices 33, 17, 9, and 57 positioned on the perpendicular bisector of
vertices 41 and 42; and

3. Vertices 1 and 49 aligned vertically with vertex 42.
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Figure 12: The graph Γ5, which was constructed in Definition 4.1.

Now, partition the edges of Γ5 into the following two sets:

E1 :=
{
σiτ [1, 17], σiτ [1, 49] : i ∈ {8, 9, . . . , 15}

}
∪

{
ω[1, 34] : ω ∈

{
σ7, σ8τ, σ15, τ

}}

and E2 := E(Γ5)\E1. Recall that the set E1 contains the edges of Γ5 that
will cross a boundary of the rectangle that represents the torus, and E2

contains all other edges of Γ5, which will cross no boundary of the rectangle.
Draw each edge [u, v] ∈ E2 to lie along the line segment that represents the
shortest distance between vertices u and v. This will result in three rows of
seven 6-cycles each with an additional cord, the edge [1, 33], and the three
triangles (1, 17, 49), (17, 41, 9), (9, 25, 57). The 16 edges of E1 in

{
σiτ [1, 17], σiτ [1, 49] : i ∈ {8, 9, . . . , 15}

}

can now be drawn without crossings over the identified top and bottom
boundaries of the rectangle that represents the torus; reading from left to
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right, these edges will cross the boundary of the rectangle in the following
order:

[25, 33], [1, 25], [26, 34], [2, 26], [27, 35], [3, 27], [28, 36], [4, 28],

[29, 37], [5, 29], [30, 38], [6, 30], [31, 39], [7, 31], [32, 40], [8, 32].

Finally, we consider the four remaining edges of E1:

σ7[1, 34] = [8, 41], σ8τ [1, 34] = [25, 56], σ15[1, 34] = [16, 33]

and

τ [1, 34] = [17, 64].

Include the edges [16, 33] and [17, 64] in our embedding of Γ5 without cross-
ings over the identified left and right sides of the rectangle. Starting at vertex
8, draw the edge [8, 41] over the top of the rectangle, then over the right side
of the rectangle ending at vertex 41. Lastly, starting at the vertex 25, draw
the edge [25, 56] over the bottom of the rectangle, then over the left side of
the rectangle ending at vertex 56 without any edge crossings. This cellular
embedding of Γ5 on the rectangular representation of the torus is depicted
in Figure 13.

We will conclude this section with a proof that the action-genus of every
generalized quaternion group Q2n with n ≥ 4 is 1.

Theorem 4.5. If n ≥ 4 is an integer, then γa(Q2n) = 1.

Proof. Let Γn be the graph constructed in Definition 4.1. By Proposition 4.2,
we have that Aut(Γn) ∼= Q2n for all n ≥ 4. It follows that γa(Q2n) ≤ 1
because Γn has a cellular embedded on the torus by Proposition 4.3. Babai
[2] proved that no graph whose automorphism group is isomorphic to a
generalized quaternion group is planar. Consequently, γa(Q2n) > 0 and thus
γa(Q2n) = 1, as desired.

5. Discussion and open questions

In this section, we pose four open questions that involve the action-genus of
groups. Our main focus in this article has been to compute the action-genus
of a given infinite family of groups; these results produced infinite collections
of groups with small action-genus. It is natural to ask the following question.

Open Question 1. Given a positive integer n, does there exist a group G
with γa(G) = n?
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Figure 13: The graph Γ5, which was constructed in Definition 4.1, embedded
on the torus; here, we use the planar representation of the torus where the
opposite sides of a rectangle have been identified.

In the past, there was great interest in computing the genera of infinite
families of graphs. For example, Beineke and Harary [4] established the
genus of the hypercube graph, and Rignel [29, 28] calculated the genus of
the complete bipartite graph. Ringel and Youngs [30] computed the genus
of the complete graph, which solved the Heawood Map-Coloring Problem.
There has also been some research on computing the genera of tripartite
graphs; however only partial results have been established (see [34] for more
information). For each of these aforementioned families of graphs, the genera
grows without bound. We wonder if this is a property that the action-genus
of groups can also exhibit.

Open Question 2. Does there exist an infinite family of groups {Gn}∞n=0

such that γa(Gn) is unbounded?

The remaining two open questions involve extensions of the action-genus
of groups and are based on prior work completed in topological graph theory.
If Γ is a connected graph, the maximum genus of Γ is the largest genus of
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all the orientable surfaces on which Γ can be cellularly embedded. Motivated
by the work on this invariant, we make the following definition for groups
G. Among all graphs Γ with AutΓ ∼= G, define the maximum action-
genus of G, denoted γMa (G), to be the maximal genus of a closed connected
orientable surface on which Γ can be cellularly embedded. In Example 2.1, we
proved that γa(S4) = 0; the cellular embedding of K4 in the torus depicted
in Figure 4(b) shows that γMa (S4) ≥ 1. Consequently, we ask the following
question.

Open Question 3. Let G be a group. What is the value of γMa (G)? How
does it compare to the value of γa(G)?

There are two types of closed surfaces, and in this article we have only
considered one type — orientable surfaces. The second type of closed surfaces
are called non-orientable surfaces, all of which have been classified. Every
closed connected non-orientable surface can be obtained by cutting holes in
a sphere and closing off each hole using a Möbius band (see, for example,
[15]). The crosscap number of a closed connected non-orientable surface
is the number of Möbius bands used to obtain its homeomorphism type. For
k ∈ N, let Nk denote a closed connected non-orientable surface with crosscap
number k. The crosscap number (or non-orientable genus) of a graph
Γ is the minimal k such that Γ can be embedded in Nk. Influenced by these
definitions, we make the following definition for groups G. Among all graphs
Γ with AutΓ ∼= G, define the non-orientable action-genus of G, denoted
γ̃a(G), to be the minimal non-orientable genus of a closed connected non-
orientable surface on which Γ can be embedded. We conclude this article
with the following question.

Open Question 4. Let G be a group. What is the value of γ̃a(G)? How
does it compare to the value of γa(G)?
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